1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
/* Copyright (c) [2023] [Syswonder Community]
* [Rukos] is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
//! Types and definitions for GICv2.
//!
//! The official documentation: <https://developer.arm.com/documentation/ihi0048/latest/>
use core::ptr::NonNull;
use crate::{TriggerMode, GIC_MAX_IRQ, SPI_RANGE};
use tock_registers::interfaces::{Readable, Writeable};
use tock_registers::register_structs;
use tock_registers::registers::{ReadOnly, ReadWrite, WriteOnly};
register_structs! {
/// GIC Distributor registers.
#[allow(non_snake_case)]
GicDistributorRegs {
/// Distributor Control Register.
(0x0000 => CTLR: ReadWrite<u32>),
/// Interrupt Controller Type Register.
(0x0004 => TYPER: ReadOnly<u32>),
/// Distributor Implementer Identification Register.
(0x0008 => IIDR: ReadOnly<u32>),
(0x000c => _reserved_0),
/// Interrupt Group Registers.
(0x0080 => IGROUPR: [ReadWrite<u32>; 0x20]),
/// Interrupt Set-Enable Registers.
(0x0100 => ISENABLER: [ReadWrite<u32>; 0x20]),
/// Interrupt Clear-Enable Registers.
(0x0180 => ICENABLER: [ReadWrite<u32>; 0x20]),
/// Interrupt Set-Pending Registers.
(0x0200 => ISPENDR: [ReadWrite<u32>; 0x20]),
/// Interrupt Clear-Pending Registers.
(0x0280 => ICPENDR: [ReadWrite<u32>; 0x20]),
/// Interrupt Set-Active Registers.
(0x0300 => ISACTIVER: [ReadWrite<u32>; 0x20]),
/// Interrupt Clear-Active Registers.
(0x0380 => ICACTIVER: [ReadWrite<u32>; 0x20]),
/// Interrupt Priority Registers.
(0x0400 => IPRIORITYR: [ReadWrite<u32>; 0x100]),
/// Interrupt Processor Targets Registers.
(0x0800 => ITARGETSR: [ReadWrite<u32>; 0x100]),
/// Interrupt Configuration Registers.
(0x0c00 => ICFGR: [ReadWrite<u32>; 0x40]),
(0x0d00 => _reserved_1),
/// Software Generated Interrupt Register.
(0x0f00 => SGIR: WriteOnly<u32>),
(0x0f04 => @END),
}
}
register_structs! {
/// GIC CPU Interface registers.
#[allow(non_snake_case)]
GicCpuInterfaceRegs {
/// CPU Interface Control Register.
(0x0000 => CTLR: ReadWrite<u32>),
/// Interrupt Priority Mask Register.
(0x0004 => PMR: ReadWrite<u32>),
/// Binary Point Register.
(0x0008 => BPR: ReadWrite<u32>),
/// Interrupt Acknowledge Register.
(0x000c => IAR: ReadOnly<u32>),
/// End of Interrupt Register.
(0x0010 => EOIR: WriteOnly<u32>),
/// Running Priority Register.
(0x0014 => RPR: ReadOnly<u32>),
/// Highest Priority Pending Interrupt Register.
(0x0018 => HPPIR: ReadOnly<u32>),
(0x001c => _reserved_1),
/// CPU Interface Identification Register.
(0x00fc => IIDR: ReadOnly<u32>),
(0x0100 => _reserved_2),
/// Deactivate Interrupt Register.
(0x1000 => DIR: WriteOnly<u32>),
(0x1004 => @END),
}
}
/// The GIC distributor.
///
/// The Distributor block performs interrupt prioritization and distribution
/// to the CPU interface blocks that connect to the processors in the system.
///
/// The Distributor provides a programming interface for:
/// - Globally enabling the forwarding of interrupts to the CPU interfaces.
/// - Enabling or disabling each interrupt.
/// - Setting the priority level of each interrupt.
/// - Setting the target processor list of each interrupt.
/// - Setting each peripheral interrupt to be level-sensitive or edge-triggered.
/// - Setting each interrupt as either Group 0 or Group 1.
/// - Forwarding an SGI to one or more target processors.
///
/// In addition, the Distributor provides:
/// - visibility of the state of each interrupt
/// - a mechanism for software to set or clear the pending state of a peripheral
/// interrupt.
pub struct GicDistributor {
base: NonNull<GicDistributorRegs>,
max_irqs: usize,
}
/// The GIC CPU interface.
///
/// Each CPU interface block performs priority masking and preemption
/// handling for a connected processor in the system.
///
/// Each CPU interface provides a programming interface for:
///
/// - enabling the signaling of interrupt requests to the processor
/// - acknowledging an interrupt
/// - indicating completion of the processing of an interrupt
/// - setting an interrupt priority mask for the processor
/// - defining the preemption policy for the processor
/// - determining the highest priority pending interrupt for the processor.
pub struct GicCpuInterface {
base: NonNull<GicCpuInterfaceRegs>,
}
unsafe impl Send for GicDistributor {}
unsafe impl Sync for GicDistributor {}
unsafe impl Send for GicCpuInterface {}
unsafe impl Sync for GicCpuInterface {}
impl GicDistributor {
/// Construct a new GIC distributor instance from the base address.
pub const fn new(base: *mut u8) -> Self {
Self {
base: NonNull::new(base).unwrap().cast(),
max_irqs: GIC_MAX_IRQ,
}
}
const fn regs(&self) -> &GicDistributorRegs {
unsafe { self.base.as_ref() }
}
/// The number of implemented CPU interfaces.
pub fn cpu_num(&self) -> usize {
((self.regs().TYPER.get() as usize >> 5) & 0b111) + 1
}
/// The maximum number of interrupts that the GIC supports
pub fn max_irqs(&self) -> usize {
((self.regs().TYPER.get() as usize & 0b11111) + 1) * 32
}
/// Configures the trigger mode for the given interrupt.
pub fn configure_interrupt(&mut self, vector: usize, tm: TriggerMode) {
// Only configurable for SPI interrupts
if vector >= self.max_irqs || vector < SPI_RANGE.start {
return;
}
// type is encoded with two bits, MSB of the two determine type
// 16 irqs encoded per ICFGR register
let reg_idx = vector >> 4;
let bit_shift = ((vector & 0xf) << 1) + 1;
let mut reg_val = self.regs().ICFGR[reg_idx].get();
match tm {
TriggerMode::Edge => reg_val |= 1 << bit_shift,
TriggerMode::Level => reg_val &= !(1 << bit_shift),
}
self.regs().ICFGR[reg_idx].set(reg_val);
}
/// Enables or disables the given interrupt.
pub fn set_enable(&mut self, vector: usize, enable: bool) {
if vector >= self.max_irqs {
return;
}
let reg = vector / 32;
let mask = 1 << (vector % 32);
if enable {
self.regs().ISENABLER[reg].set(mask);
} else {
self.regs().ICENABLER[reg].set(mask);
}
}
/// Initializes the GIC distributor.
///
/// It disables all interrupts, sets the target of all SPIs to CPU 0,
/// configures all SPIs to be edge-triggered, and finally enables the GICD.
///
/// This function should be called only once.
pub fn init(&mut self) {
let max_irqs = self.max_irqs();
assert!(max_irqs <= GIC_MAX_IRQ);
self.max_irqs = max_irqs;
// Disable all interrupts
for i in (0..max_irqs).step_by(32) {
self.regs().ICENABLER[i / 32].set(u32::MAX);
self.regs().ICPENDR[i / 32].set(u32::MAX);
}
if self.cpu_num() > 1 {
for i in (SPI_RANGE.start..max_irqs).step_by(4) {
// Set external interrupts to target cpu 0
self.regs().ITARGETSR[i / 4].set(0x01_01_01_01);
}
}
// Initialize all the SPIs to edge triggered
for i in SPI_RANGE.start..max_irqs {
self.configure_interrupt(i, TriggerMode::Edge);
}
// enable GIC0
self.regs().CTLR.set(1);
}
}
impl GicCpuInterface {
/// Construct a new GIC CPU interface instance from the base address.
pub const fn new(base: *mut u8) -> Self {
Self {
base: NonNull::new(base).unwrap().cast(),
}
}
const fn regs(&self) -> &GicCpuInterfaceRegs {
unsafe { self.base.as_ref() }
}
/// Returns the interrupt ID of the highest priority pending interrupt for
/// the CPU interface. (read GICC_IAR)
///
/// The read returns a spurious interrupt ID of `1023` if the distributor
/// or the CPU interface are disabled, or there is no pending interrupt on
/// the CPU interface.
pub fn iar(&self) -> u32 {
self.regs().IAR.get()
}
/// Informs the CPU interface that it has completed the processing of the
/// specified interrupt. (write GICC_EOIR)
///
/// The value written must be the value returns from [`Self::iar`].
pub fn eoi(&self, iar: u32) {
self.regs().EOIR.set(iar);
}
/// handles the signaled interrupt.
///
/// It first reads GICC_IAR to obtain the pending interrupt ID and then
/// calls the given handler. After the handler returns, it writes GICC_EOIR
/// to acknowledge the interrupt.
///
/// If read GICC_IAR returns a spurious interrupt ID of `1023`, it does
/// nothing.
pub fn handle_irq<F>(&self, handler: F)
where
F: FnOnce(u32),
{
let iar = self.iar();
let vector = iar & 0x3ff;
if vector < 1020 {
handler(vector);
self.eoi(iar);
} else {
// spurious
}
}
/// Initializes the GIC CPU interface.
///
/// It unmask interrupts at all priority levels and enables the GICC.
///
/// This function should be called only once.
pub fn init(&self) {
// enable GIC0
self.regs().CTLR.set(1);
// unmask interrupts at all priority levels
self.regs().PMR.set(0xff);
}
}