1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
/* Copyright (c) [2023] [Syswonder Community]
* [Rukos] is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
extern crate alloc;
use alloc::{vec, vec::Vec};
use core::marker::PhantomData;
use memory_addr::{PhysAddr, VirtAddr, PAGE_SIZE_4K};
use crate::{GenericPTE, PagingIf, PagingMetaData};
use crate::{MappingFlags, PageSize, PagingError, PagingResult};
const ENTRY_COUNT: usize = 512;
const fn p4_index(vaddr: VirtAddr) -> usize {
(vaddr.as_usize() >> (12 + 27)) & (ENTRY_COUNT - 1)
}
const fn p3_index(vaddr: VirtAddr) -> usize {
(vaddr.as_usize() >> (12 + 18)) & (ENTRY_COUNT - 1)
}
const fn p2_index(vaddr: VirtAddr) -> usize {
(vaddr.as_usize() >> (12 + 9)) & (ENTRY_COUNT - 1)
}
const fn p1_index(vaddr: VirtAddr) -> usize {
(vaddr.as_usize() >> 12) & (ENTRY_COUNT - 1)
}
/// A generic page table struct for 64-bit platform.
///
/// It also tracks all intermediate level tables. They will be deallocated
/// When the [`PageTable64`] itself is dropped.
pub struct PageTable64<M: PagingMetaData, PTE: GenericPTE, IF: PagingIf> {
root_paddr: PhysAddr,
intrm_tables: Vec<PhysAddr>,
_phantom: PhantomData<(M, PTE, IF)>,
}
impl<M: PagingMetaData, PTE: GenericPTE, IF: PagingIf> PageTable64<M, PTE, IF> {
/// Creates a new page table instance or returns the error.
///
/// It will allocate a new page for the root page table.
pub fn try_new() -> PagingResult<Self> {
let root_paddr = Self::alloc_table()?;
Ok(Self {
root_paddr,
intrm_tables: vec![root_paddr],
_phantom: PhantomData,
})
}
/// Returns the physical address of the root page table.
pub const fn root_paddr(&self) -> PhysAddr {
self.root_paddr
}
/// Maps a virtual page to a physical frame with the given `page_size`
/// and mapping `flags`.
///
/// The virtual page starts with `vaddr`, amd the physical frame starts with
/// `target`. If the addresses is not aligned to the page size, they will be
/// aligned down automatically.
///
/// Returns [`Err(PagingError::AlreadyMapped)`](PagingError::AlreadyMapped)
/// if the mapping is already present.
pub fn map(
&mut self,
vaddr: VirtAddr,
target: PhysAddr,
page_size: PageSize,
flags: MappingFlags,
) -> PagingResult {
let entry = self.get_entry_mut_or_create(vaddr, page_size)?;
if !entry.is_unused() {
return Err(PagingError::AlreadyMapped);
}
*entry = GenericPTE::new_page(target.align_down(page_size), flags, page_size.is_huge());
Ok(())
}
/// Unmaps the mapping starts with `vaddr`.
///
/// Returns [`Err(PagingError::NotMapped)`](PagingError::NotMapped) if the
/// mapping is not present.
pub fn unmap(&mut self, vaddr: VirtAddr) -> PagingResult<(PhysAddr, PageSize)> {
let (entry, size) = self.get_entry_mut(vaddr)?;
if entry.is_unused() {
return Err(PagingError::NotMapped);
}
let paddr = entry.paddr();
entry.clear();
Ok((paddr, size))
}
/// Query the result of the mapping starts with `vaddr`.
///
/// Returns the physical address of the target frame, mapping flags, and
/// the page size.
///
/// Returns [`Err(PagingError::NotMapped)`](PagingError::NotMapped) if the
/// mapping is not present.
pub fn query(&self, vaddr: VirtAddr) -> PagingResult<(PhysAddr, MappingFlags, PageSize)> {
let (entry, size) = self.get_entry_mut(vaddr)?;
if entry.is_unused() {
return Err(PagingError::NotMapped);
}
let off = vaddr.align_offset(size);
Ok((entry.paddr() + off, entry.flags(), size))
}
/// Updates the target or flags of the mapping starts with `vaddr`. If the
/// corresponding argument is `None`, it will not be updated.
///
/// Returns the page size of the mapping.
///
/// Returns [`Err(PagingError::NotMapped)`](PagingError::NotMapped) if the
/// mapping is not present.
pub fn update(
&mut self,
vaddr: VirtAddr,
paddr: Option<PhysAddr>,
flags: Option<MappingFlags>,
) -> PagingResult<PageSize> {
let (entry, size) = self.get_entry_mut(vaddr)?;
if let Some(paddr) = paddr {
entry.set_paddr(paddr);
}
if let Some(flags) = flags {
entry.set_flags(flags, size.is_huge());
}
Ok(size)
}
/// Map a contiguous virtual memory region to a contiguous physical memory
/// region with the given mapping `flags`.
///
/// The virtual and physical memory regions start with `vaddr` and `paddr`
/// respectively. The region size is `size`. The addresses and `size` must
/// be aligned to 4K, otherwise it will return [`Err(PagingError::NotAligned)`].
///
/// When `allow_huge` is true, it will try to map the region with huge pages
/// if possible. Otherwise, it will map the region with 4K pages.
///
/// [`Err(PagingError::NotAligned)`]: PagingError::NotAligned
pub fn map_region(
&mut self,
vaddr: VirtAddr,
paddr: PhysAddr,
size: usize,
flags: MappingFlags,
allow_huge: bool,
) -> PagingResult {
if !vaddr.is_aligned(PageSize::Size4K)
|| !paddr.is_aligned(PageSize::Size4K)
|| !memory_addr::is_aligned(size, PageSize::Size4K.into())
{
return Err(PagingError::NotAligned);
}
trace!(
"map_region({:#x}): [{:#x}, {:#x}) -> [{:#x}, {:#x}) {:?}",
self.root_paddr(),
vaddr,
vaddr + size,
paddr,
paddr + size,
flags,
);
let mut vaddr = vaddr;
let mut paddr = paddr;
let mut size = size;
while size > 0 {
let page_size = if allow_huge {
if vaddr.is_aligned(PageSize::Size1G)
&& paddr.is_aligned(PageSize::Size1G)
&& size >= PageSize::Size1G as usize
{
PageSize::Size1G
} else if vaddr.is_aligned(PageSize::Size2M)
&& paddr.is_aligned(PageSize::Size2M)
&& size >= PageSize::Size2M as usize
{
PageSize::Size2M
} else {
PageSize::Size4K
}
} else {
PageSize::Size4K
};
self.map(vaddr, paddr, page_size, flags).inspect_err(|e| {
error!(
"failed to map page: {:#x?}({:?}) -> {:#x?}, {:?}",
vaddr, page_size, paddr, e
)
})?;
vaddr += page_size as usize;
paddr += page_size as usize;
size -= page_size as usize;
}
Ok(())
}
/// Unmap a contiguous virtual memory region.
///
/// The region must be mapped before using [`PageTable64::map_region`], or
/// unexpected behaviors may occur.
pub fn unmap_region(&mut self, vaddr: VirtAddr, size: usize) -> PagingResult {
trace!(
"unmap_region({:#x}) [{:#x}, {:#x})",
self.root_paddr(),
vaddr,
vaddr + size,
);
let mut vaddr = vaddr;
let mut size = size;
while size > 0 {
let (_, page_size) = self
.unmap(vaddr)
.inspect_err(|e| error!("failed to unmap page: {:#x?}, {:?}", vaddr, e))?;
assert!(vaddr.is_aligned(page_size));
assert!(page_size as usize <= size);
vaddr += page_size as usize;
size -= page_size as usize;
}
Ok(())
}
/// Walk the page table recursively.
///
/// When reaching the leaf page table, call `func` on the current page table
/// entry. The max number of enumerations in one table is limited by `limit`.
///
/// The arguments of `func` are:
/// - Current level (starts with `0`): `usize`
/// - The index of the entry in the current-level table: `usize`
/// - The virtual address that is mapped to the entry: [`VirtAddr`]
/// - The reference of the entry: [`&PTE`](GenericPTE)
pub fn walk<F>(&self, limit: usize, func: &F) -> PagingResult
where
F: Fn(usize, usize, VirtAddr, &PTE),
{
self.walk_recursive(
self.table_of(self.root_paddr()),
0,
VirtAddr::from(0),
limit,
func,
)
}
}
// Private implements.
impl<M: PagingMetaData, PTE: GenericPTE, IF: PagingIf> PageTable64<M, PTE, IF> {
fn alloc_table() -> PagingResult<PhysAddr> {
if let Some(paddr) = IF::alloc_frame() {
let ptr = IF::phys_to_virt(paddr).as_mut_ptr();
unsafe { core::ptr::write_bytes(ptr, 0, PAGE_SIZE_4K) };
Ok(paddr)
} else {
Err(PagingError::NoMemory)
}
}
fn table_of<'a>(&self, paddr: PhysAddr) -> &'a [PTE] {
let ptr = IF::phys_to_virt(paddr).as_ptr() as _;
unsafe { core::slice::from_raw_parts(ptr, ENTRY_COUNT) }
}
fn table_of_mut<'a>(&self, paddr: PhysAddr) -> &'a mut [PTE] {
let ptr = IF::phys_to_virt(paddr).as_mut_ptr() as _;
unsafe { core::slice::from_raw_parts_mut(ptr, ENTRY_COUNT) }
}
fn next_table_mut<'a>(&self, entry: &PTE) -> PagingResult<&'a mut [PTE]> {
if !entry.is_present() {
Err(PagingError::NotMapped)
} else if entry.is_huge() {
Err(PagingError::MappedToHugePage)
} else {
Ok(self.table_of_mut(entry.paddr()))
}
}
fn next_table_mut_or_create<'a>(&mut self, entry: &mut PTE) -> PagingResult<&'a mut [PTE]> {
if entry.is_unused() {
let paddr = Self::alloc_table()?;
self.intrm_tables.push(paddr);
*entry = GenericPTE::new_table(paddr);
Ok(self.table_of_mut(paddr))
} else {
self.next_table_mut(entry)
}
}
fn get_entry_mut(&self, vaddr: VirtAddr) -> PagingResult<(&mut PTE, PageSize)> {
let p3 = if M::LEVELS == 3 {
self.table_of_mut(self.root_paddr())
} else if M::LEVELS == 4 {
let p4 = self.table_of_mut(self.root_paddr());
let p4e = &mut p4[p4_index(vaddr)];
self.next_table_mut(p4e)?
} else {
unreachable!()
};
let p3e = &mut p3[p3_index(vaddr)];
if p3e.is_huge() {
return Ok((p3e, PageSize::Size1G));
}
let p2 = self.next_table_mut(p3e)?;
let p2e = &mut p2[p2_index(vaddr)];
if p2e.is_huge() {
return Ok((p2e, PageSize::Size2M));
}
let p1 = self.next_table_mut(p2e)?;
let p1e = &mut p1[p1_index(vaddr)];
Ok((p1e, PageSize::Size4K))
}
fn get_entry_mut_or_create(
&mut self,
vaddr: VirtAddr,
page_size: PageSize,
) -> PagingResult<&mut PTE> {
let p3 = if M::LEVELS == 3 {
self.table_of_mut(self.root_paddr())
} else if M::LEVELS == 4 {
let p4 = self.table_of_mut(self.root_paddr());
let p4e = &mut p4[p4_index(vaddr)];
self.next_table_mut_or_create(p4e)?
} else {
unreachable!()
};
let p3e = &mut p3[p3_index(vaddr)];
if page_size == PageSize::Size1G {
return Ok(p3e);
}
let p2 = self.next_table_mut_or_create(p3e)?;
let p2e = &mut p2[p2_index(vaddr)];
if page_size == PageSize::Size2M {
return Ok(p2e);
}
let p1 = self.next_table_mut_or_create(p2e)?;
let p1e = &mut p1[p1_index(vaddr)];
Ok(p1e)
}
fn walk_recursive<F>(
&self,
table: &[PTE],
level: usize,
start_vaddr: VirtAddr,
limit: usize,
func: &F,
) -> PagingResult
where
F: Fn(usize, usize, VirtAddr, &PTE),
{
let mut n = 0;
for (i, entry) in table.iter().enumerate() {
let vaddr = start_vaddr + (i << (12 + (M::LEVELS - 1 - level) * 9));
if entry.is_present() {
func(level, i, vaddr, entry);
if level < M::LEVELS - 1 && !entry.is_huge() {
let table_entry = self.next_table_mut(entry)?;
self.walk_recursive(table_entry, level + 1, vaddr, limit, func)?;
}
n += 1;
if n >= limit {
break;
}
}
}
Ok(())
}
}
impl<M: PagingMetaData, PTE: GenericPTE, IF: PagingIf> Drop for PageTable64<M, PTE, IF> {
fn drop(&mut self) {
for frame in &self.intrm_tables {
IF::dealloc_frame(*frame);
}
}
}