1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/* Copyright (c) [2023] [Syswonder Community]
* [Rukos] is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
//! AArch64 VMSAv8-64 translation table format descriptors.
use aarch64_cpu::registers::MAIR_EL1;
use core::fmt;
use memory_addr::PhysAddr;
use crate::{GenericPTE, MappingFlags};
bitflags::bitflags! {
/// Memory attribute fields in the VMSAv8-64 translation table format descriptors.
#[derive(Debug)]
pub struct DescriptorAttr: u64 {
// Attribute fields in stage 1 VMSAv8-64 Block and Page descriptors:
/// Whether the descriptor is valid.
const VALID = 1 << 0;
/// The descriptor gives the address of the next level of translation table or 4KB page.
/// (not a 2M, 1G block)
const NON_BLOCK = 1 << 1;
/// Memory attributes index field.
const ATTR_INDX = 0b111 << 2;
/// Non-secure bit. For memory accesses from Secure state, specifies whether the output
/// address is in Secure or Non-secure memory.
const NS = 1 << 5;
/// Access permission: accessable at EL0.
const AP_EL0 = 1 << 6;
/// Access permission: read-only.
const AP_RO = 1 << 7;
/// Shareability: Inner Shareable (otherwise Outer Shareable).
const INNER = 1 << 8;
/// Shareability: Inner or Outer Shareable (otherwise Non-shareable).
const SHAREABLE = 1 << 9;
/// The Access flag.
const AF = 1 << 10;
/// The not global bit.
const NG = 1 << 11;
/// Indicates that 16 adjacent translation table entries point to contiguous memory regions.
const CONTIGUOUS = 1 << 52;
/// The Privileged execute-never field.
const PXN = 1 << 53;
/// The Execute-never or Unprivileged execute-never field.
const UXN = 1 << 54;
// Next-level attributes in stage 1 VMSAv8-64 Table descriptors:
/// PXN limit for subsequent levels of lookup.
const PXN_TABLE = 1 << 59;
/// XN limit for subsequent levels of lookup.
const XN_TABLE = 1 << 60;
/// Access permissions limit for subsequent levels of lookup: access at EL0 not permitted.
const AP_NO_EL0_TABLE = 1 << 61;
/// Access permissions limit for subsequent levels of lookup: write access not permitted.
const AP_NO_WRITE_TABLE = 1 << 62;
/// For memory accesses from Secure state, specifies the Security state for subsequent
/// levels of lookup.
const NS_TABLE = 1 << 63;
}
}
/// The memory attributes index field in the descriptor, which is used to index
/// into the MAIR (Memory Attribute Indirection Register).
#[repr(u64)]
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub enum MemAttr {
/// Device-nGnRE memory
Device = 0,
/// Normal memory
Normal = 1,
/// Normal non-cacheable memory
NormalNonCacheable = 2,
}
impl DescriptorAttr {
#[allow(clippy::unusual_byte_groupings)]
const ATTR_INDEX_MASK: u64 = 0b111_00;
/// Constructs a descriptor from the memory index, leaving the other fields
/// empty.
pub const fn from_mem_attr(idx: MemAttr) -> Self {
let mut bits = (idx as u64) << 2;
if matches!(idx, MemAttr::Normal | MemAttr::NormalNonCacheable) {
bits |= Self::INNER.bits() | Self::SHAREABLE.bits();
}
Self::from_bits_retain(bits)
}
/// Returns the memory attribute index field.
pub const fn mem_attr(&self) -> Option<MemAttr> {
let idx = (self.bits() & Self::ATTR_INDEX_MASK) >> 2;
Some(match idx {
0 => MemAttr::Device,
1 => MemAttr::Normal,
2 => MemAttr::NormalNonCacheable,
_ => return None,
})
}
}
impl MemAttr {
/// The MAIR_ELx register should be set to this value to match the memory
/// attributes in the descriptors.
pub const MAIR_VALUE: u64 = {
// Device-nGnRE memory
let attr0 = MAIR_EL1::Attr0_Device::nonGathering_nonReordering_EarlyWriteAck.value;
// Normal memory
let attr1 = MAIR_EL1::Attr1_Normal_Inner::WriteBack_NonTransient_ReadWriteAlloc.value
| MAIR_EL1::Attr1_Normal_Outer::WriteBack_NonTransient_ReadWriteAlloc.value;
let attr2 = MAIR_EL1::Attr2_Normal_Inner::NonCacheable.value
+ MAIR_EL1::Attr2_Normal_Outer::NonCacheable.value;
attr0 | attr1 | attr2 // 0x44_ff_04
};
}
impl From<DescriptorAttr> for MappingFlags {
fn from(attr: DescriptorAttr) -> Self {
let mut flags = Self::empty();
if attr.contains(DescriptorAttr::VALID) {
flags |= Self::READ;
}
if !attr.contains(DescriptorAttr::AP_RO) {
flags |= Self::WRITE;
}
if attr.contains(DescriptorAttr::AP_EL0) {
flags |= Self::USER;
if !attr.contains(DescriptorAttr::UXN) {
flags |= Self::EXECUTE;
}
} else if !attr.intersects(DescriptorAttr::PXN) {
flags |= Self::EXECUTE;
}
match attr.mem_attr() {
Some(MemAttr::Device) => flags |= Self::DEVICE,
Some(MemAttr::NormalNonCacheable) => flags |= Self::UNCACHED,
_ => {}
}
flags
}
}
impl From<MappingFlags> for DescriptorAttr {
fn from(flags: MappingFlags) -> Self {
let mut attr = if flags.contains(MappingFlags::DEVICE) {
Self::from_mem_attr(MemAttr::Device)
} else if flags.contains(MappingFlags::UNCACHED) {
Self::from_mem_attr(MemAttr::NormalNonCacheable)
} else {
Self::from_mem_attr(MemAttr::Normal)
};
if flags.contains(MappingFlags::READ) {
attr |= Self::VALID;
}
if !flags.contains(MappingFlags::WRITE) {
attr |= Self::AP_RO;
}
if flags.contains(MappingFlags::USER) {
attr |= Self::AP_EL0 | Self::PXN;
if !flags.contains(MappingFlags::EXECUTE) {
attr |= Self::UXN;
}
} else {
attr |= Self::UXN;
if !flags.contains(MappingFlags::EXECUTE) {
attr |= Self::PXN;
}
}
attr
}
}
/// A VMSAv8-64 translation table descriptor.
///
/// Note that the **AttrIndx\[2:0\]** (bit\[4:2\]) field is set to `0` for device
/// memory, and `1` for normal memory. The system must configure the MAIR_ELx
/// system register accordingly.
#[derive(Clone, Copy)]
#[repr(transparent)]
pub struct A64PTE(u64);
impl A64PTE {
const PHYS_ADDR_MASK: u64 = 0x0000_ffff_ffff_f000; // bits 12..48
/// Creates an empty descriptor with all bits set to zero.
pub const fn empty() -> Self {
Self(0)
}
}
impl GenericPTE for A64PTE {
fn new_page(paddr: PhysAddr, flags: MappingFlags, is_huge: bool) -> Self {
let mut attr = DescriptorAttr::from(flags) | DescriptorAttr::AF;
if !is_huge {
attr |= DescriptorAttr::NON_BLOCK;
}
Self(attr.bits() | (paddr.as_usize() as u64 & Self::PHYS_ADDR_MASK))
}
fn new_table(paddr: PhysAddr) -> Self {
let attr = DescriptorAttr::NON_BLOCK | DescriptorAttr::VALID;
Self(attr.bits() | (paddr.as_usize() as u64 & Self::PHYS_ADDR_MASK))
}
fn paddr(&self) -> PhysAddr {
PhysAddr::from((self.0 & Self::PHYS_ADDR_MASK) as usize)
}
fn flags(&self) -> MappingFlags {
DescriptorAttr::from_bits_truncate(self.0).into()
}
fn set_paddr(&mut self, paddr: PhysAddr) {
self.0 = (self.0 & !Self::PHYS_ADDR_MASK) | (paddr.as_usize() as u64 & Self::PHYS_ADDR_MASK)
}
fn set_flags(&mut self, flags: MappingFlags, is_huge: bool) {
let mut attr = DescriptorAttr::from(flags) | DescriptorAttr::AF;
if !is_huge {
attr |= DescriptorAttr::NON_BLOCK;
}
self.0 = (self.0 & Self::PHYS_ADDR_MASK) | attr.bits();
}
fn is_unused(&self) -> bool {
self.0 == 0
}
fn is_present(&self) -> bool {
DescriptorAttr::from_bits_truncate(self.0).contains(DescriptorAttr::VALID)
}
fn is_huge(&self) -> bool {
!DescriptorAttr::from_bits_truncate(self.0).contains(DescriptorAttr::NON_BLOCK)
}
fn clear(&mut self) {
self.0 = 0
}
}
impl fmt::Debug for A64PTE {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut f = f.debug_struct("A64PTE");
f.field("raw", &self.0)
.field("paddr", &self.paddr())
.field("attr", &DescriptorAttr::from_bits_truncate(self.0))
.field("flags", &self.flags())
.finish()
}
}